Paper Reference(s)

6683/01 Edexcel GCE

Statistics S1

Advanced Subsidiary

Friday 17 May 2013 – Morning

Time: 1 hour 30 minutes

Materials required for examination

Items included with question papers

Mathematical Formulae (Pink)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

This paper has 6 questions.

The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. 1. A meteorologist believes that there is a relationship between the height above sea level, h m, and the air temperature, t °C. Data is collected at the same time from 9 different places on the same mountain. The data is summarised in the table below.

h	1400	1100	260	840	900	550	1230	100	770
t	3	10	20	9	10	13	5	24	16

[You may assume that $\sum h = 7150$, $\sum t = 110$, $\sum h^2 = 7171500$, $\sum t^2 = 1716$, $\sum th = 64980$ and Stt = 371.56]

(a) Calculate S_{th} and S_{hh} . Give your answers to 3 significant figures.

(3)

(b) Calculate the product moment correlation coefficient for this data.

(2)

(c) State whether or not your value supports the use of a regression equation to predict the air temperature at different heights on this mountain. Give a reason for your answer.

(1)

- (d) Find the equation of the regression line of t on h giving your answer in the form t = a + bh.
- (e) Interpret the value of b.

(1)

(f) Estimate the difference in air temperature between a height of 500 m and a height of 1000 m.

(2)

2. The marks of a group of female students in a statistics test are summarised in Figure 1.

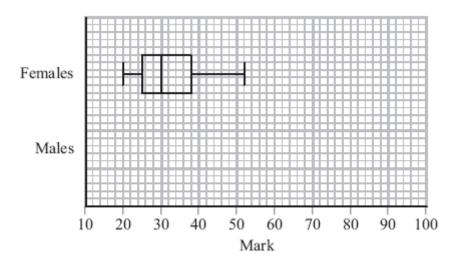


Figure 1

(a) Write down the mark which is exceeded by 75% of the female students.

(1)

The marks of a group of male students in the same statistics test are summarised by the stem and leaf diagram below.

Mark	(2 6 means 26)	Totals
1	4	(1)
2	6	(1)
3	4 4 7	(3)
4	066778	(6)
5	001113677	(9)
6	2 2 3 3 3 8	(6)
7	0 0 8	(3)
8	5	(1)
9	0	(1)

(b) Find the median and interquartile range of the marks of the male students.

(3)

An outlier is a mark that is

either more than $1.5\times interquartile$ range above the upper quartile

or more than $1.5 \times$ interquartile range below the lower quartile.

(c) On graph paper draw a box plot to represent the marks of the male students, indicating clearly any outliers.

(5)

(d) Compare and contrast the marks of the male and the female students.

(2)

3. In a company the 200 employees are classified as full-time workers, part-time workers or contractors.

The table below shows the number of employees in each category and whether they walk to work or use some form of transport.

	Walk	Transport
Full-time worker	2	8
Part-time worker	35	75
Contractor	30	50

The events F, H and C are that an employee is a full-time worker, part-time worker or contractor respectively. Let W be the event that an employee walks to work.

An employee is selected at random.

Find

$$(a) P(H)$$
 (2)

(b)
$$P([F \cap W]')$$
 (2)

$$(c) P(W \mid C)$$

$$(2)$$

Let *B* be the event that an employee uses the bus.

Given that 10% of full-time workers use the bus, 30% of part-time workers use the bus and 20% of contractors use the bus,

- (d) draw a Venn diagram to represent the events F, H, C and B, (4)
- (e) find the probability that a randomly selected employee uses the bus to travel to work. (2)

4. The following table summarises the times, t minutes to the nearest minute, recorded for a group of students to complete an exam.

Time (minutes) t	11 – 20	21 – 25	26 – 30	31 – 35	36 – 45	46 – 60
Number of students f	62	88	16	13	11	10

[You may use
$$\Sigma ft^2 = 134281.25$$
]

(a) Estimate the mean and standard deviation of these data.

(5)

(b) Use linear interpolation to estimate the value of the median.

(2)

(c) Show that the estimated value of the lower quartile is 18.6 to 3 significant figures.

(1)

(d) Estimate the interquartile range of this distribution.

(2)

(e) Give a reason why the mean and standard deviation are not the most appropriate summary statistics to use with these data.

(1)

The person timing the exam made an error and each student actually took 5 minutes less than the times recorded above. The table below summarises the actual times.

Time (minutes) t	6 – 15	16 – 20	21 – 25	26 – 30	31 – 40	41 – 55
Number of students f	62	88	16	13	11	10

(f) Without further calculations, explain the effect this would have on each of the estimates found in parts (a), (b), (c) and (d).

(3)

5. A biased die with six faces is rolled. The discrete random variable *X* represents the score on the uppermost face. The probability distribution of *X* is shown in the table below.

x	1	2	3	4	5	6
P(X = x)	а	а	а	b	b	0.3

(a) Given that E(X) = 4.2 find the value of a and the value of b.

(5)

(*b*) Show that $E(X^2) = 20.4$.

(1)

(c) Find Var(5-3X).

(3)

A biased die with five faces is rolled. The discrete random variable *Y* represents the score which is uppermost. The cumulative distribution function of *Y* is shown in the table below.

у	1	2	3	4	5
F(y)	$\frac{1}{10}$	$\frac{2}{10}$	3 <i>k</i>	4k	5 <i>k</i>

(d) Find the value of k.

(1)

(e) Find the probability distribution of Y.

(3)

Each die is rolled once. The scores on the two dice are independent.

(f) Find the probability that the sum of the two scores equals 2.

(2)

6. The weight, in grams, of beans in a tin is normally distributed with mean μ and standard deviation 7.8.

Given that 10% of tins contain less than 200 g, find

(a) the value of μ , (3)

(b) the percentage of tins that contain more than 225 g of beans. (3)

The machine settings are adjusted so that the weight, in grams, of beans in a tin is normally distributed with mean 205 and standard deviation σ .

(c) Given that 98% of tins contain between 200 g and 210 g find the value of σ . (4)

TOTAL FOR PAPER: 75 MARKS

END

Question		Scheme	Marks				
1.	(a)	$(S_{th}) = 64980 - \frac{7150 \times 110}{9} = -22408.9$ -22400 $(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ 1490000	M1 A1				
		$(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ 1490 000	A1				
	(b)	- 22408.9	(3)				
	()	$r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068$ awrt $-$ 0.952	M1A1				
	(c)	Yes as r is close to -1 (if $-1 < r < -0.5$) or Yes as r is close to 1 (if $1 > r > 0.5$) [If $-0.5 \le r \le 0.5$ allow "no since r is close to 0"] [If $ r > 1$ award B0]	B1ft (1)				
	(d)	$b = \frac{-22408.9}{1491222.2} = -0.015027 \qquad \text{(allow } \frac{-56}{3725}\text{)}$ awrt - 0.015	M1 A1				
		$a = \frac{110}{9}$ - "their b " × $\frac{7150}{9}$ = (12.20.015 × 794.4), = 24.1604 so $t = 24.2 - 0.015h$	M1, A1				
	(e)	0.015 is the <u>drop</u> in temp, (in ⁰ C), for every 1(m) <u>increase</u> in height above sea level.	B1 (4)				
	(f)	Change = $("24.2 - 0.015" \times 500) - ("24.2 - 0.015" \times 1000) \text{ or } 500 \times "0.015"$ = ± 7.5 (awrt ± 7.5) (only ft a value < 100)	(1) M1 A1ft (2) (13 marks)				
		Notes					
	(a)	M1 for at least one correct expression (condone transcription error) 1^{st} A1 for S_{hh} = awrt 1 490 000 or S_{th} = awrt -22 400 (Condone S_{xx} or S_{xy} = or e	even $S_{yy} =$				
		2^{nd} A1 for $S_{th} = -22\ 400$ and $S_{hh} = 1\ 490\ 000$ only. [This mark is assessing corrections of the content of	ect rounding]				
		(Allow no labels but mis-labelling S_{th} as S_{hh} etc loses the final A1)					
	(b)	M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digits Must have their S_{hh} , S_{th} and given S_{tt} (3sf or better) in the correct places. Condone in					
		Award M1A0 for awrt -0.95 with no expression seen. M0 for $\frac{64980}{\sqrt{7171500 \times 7}}$.	864				
	(c)	B1ft must comment on supporting and state: high/strong/clear (negative or positive) correlation "points lie close to a straight line" is B0 since there is no evidence of this.					
	(d)	1 st M1 for a correct expression for b. Follow through their S_{hh} & S_{th} . Condone m	issing "-"				
		1^{st} A1 for awrt -0.015 or allow exact fraction from rounded values.					
		2^{nd} M1 for a correct method for a . Follow through their value of b for a correct equation for t and h with $a = \text{awrt } 24.2$ and $b = \text{awrt } -0.015$ No fractions					
	(e)	B1 Must mention h (or height) and t (or temperature) and their (1 sf) value of b in a correct comment					
	(f)	M1 for a correct expression seen based on their equation. Allow transcription error If answer is $500 \times$ their b to 2sf and < 100 (M1A1), If answer is $500 \times$ their b to 2sf and ≥ 100	_				

Question	Scheme	Marks				
2. (a)	25 (allow any x where $24 < x < 26$)	B1				
(b)	\mathbf{Q}_2 (or median or m) = 51	(1) B1				
	$IQR = 63 - 46 = 17$ (or $Q_3 - Q_1 = 17$)	M1, A1				
(c)	Outliers given by $46 - 1.5 \times 17 = 20.5$ or $63 + 1.5 \times 17 = 88.5$ Outliers limits are 20.5 and 88.5	(3) M1 A1				
	Females Allow lower whisker to 20.5 and upper whisker to 88.5	M1				
	Males Males Do not allow a mix of whiskers e.g 20.5 and 85 Do not allow both sets of	A1ft				
	10 20 30 40 50 60 70 80 90 100 whiskers Mark	B1				
(1)		(5)				
(d)	Medians: Median for females lower than males IQR: IQR for females smaller than males. Allow "lower/higher" but not "wider" Range: Range of females is less than males Sharmaga: Male and female marks are both positively sleave.	B1ft B1ft				
	Skewness: Male and female marks are both positively skew Ignore other statements about average, spread, mean, st. Dev, variation, outliers etc	(2) (11 marks)				
	Notes	(11 marks)				
	Mark (b) and (c) together BUT must see clear statement that median (or m or Q_2) = 51 and	d IOR = 17				
(b)	M1 for 2 quartiles (at least one correct) and attempt to find the difference. Must see their for 17 only. [Answer only of IQR= 17 scores M1A1]					
(c)	A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise: 1 st M1 for correct attempt to calc' at least one limit for outliers, ft their quartiles or IQR or award for sight of 20.5 or 88.5 1 st A1 for identifying both limits of 20.5 and 88.5 2 nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (or correct ft) (condone no median marked) (condone 2 upper or 2 lower whiskers) 2 nd A1ft for their 20.5 or 26,46,51,63 and 85 or their 88.5 in appropriate places and readable off their scale. Follow through their 20.5 and their 88.5 only, other values need to be correct If there are 2 upper or 2 lower whiskers A0 B1 for only 2 outliers appropriately marked at 14 and 90 Do not award if whiskers go beyond these values. Apply ± 0.5 square accuracy for diagram A box plot not on the graph paper can only score the 1 st M1A1					
(d)	In (d) ft from their diagrams (if no diagram then use their values) 1st B1ft for one correct comment comparing median, IQR, range or skewness 2nd B1ft for a second correct comment comparing median, IQR, range or skewness Do not allow contradictory statements					

Question	Scheme		Marks		
3. (a)	$\frac{35+75}{200} = 0.55$		M1 A1		
			(2)		
(b)	$\frac{200-2}{200} = 0.99$		M1 A1		
	200		(2)		
(c)	$P(W \cap C) = \frac{30}{200} = 30$				
	$[P(W \mid C)] = \frac{P(W \cap C)}{P(C)} = \frac{\frac{30}{200}}{\frac{80}{200}} = \frac{30}{80} = 0.375$	M1 A1			
			(2)		
(d)	C = 64	Allow diagrams with intersections between <i>F</i> ,	M1		
	(16) (0)	C and H provided these are marked with 0.	B1 for 9, 1		
	33 B		B1 for 77,33 B1 for 64,16		
	$ \begin{array}{c} $	If their diagram indicates extra empty regions do not			
	Н	treat a blank as 0.	(4)		
	$\frac{1+16+33}{200} = 0.25$				
(e)	${200} = 0.25$		M1 A1 (2)		
	Notes		(12 marks)		
	Correct answers only score full	_			
(a)	If a probability is not in [0] M1 for denominator of 200 and attempt to add 2 + 8	· -			
	A1 for 0.55 or exact equivalent fraction e.g. $\frac{11}{20}$				
(b)	M1 for a fully correct expression (e.g. 1–0.01)				
(6)	A1 for 0.99 or an exact equivalent fraction				
(c)	M1 for a correct ratio or a correct formula and at least	t one correct prob (i.e. a corre	ct num or		
	denom). BUT award M0 if num is $P(W) \times P(C) =$	<u> </u>			
	A1 for 0.375 or 3/8 or any exact equivalent.				
(d)	M1 for a box and the 3 regions F , C and H labelled or imp		here should		
	be no intersections between F , C and H unless marked circles for F , C and B with $H = F' \cap C'$ etc. Condon		am.		
F	1^{st} B1 for the 9 and 1 or 0.045 and 0.005 (o.e.) in the correct regions May have B in 3				
H C	2 nd B1 for the 77 and 33 or 0.385 and 0.165 (o.e.) in the correct regions 3 rd B1 for the 64 and 16 or 0.32 and 0.08 (o.e.) in the correct regions. bits that are disconnected.				
(a)					
(e)	Also allow sum of their probabilities (provided su		u 11u111 < 200		
	A1 for 0.25 or any exact equivalent				

Question	Scheme					
4. (a)	$\sum ft = 4837.5$ (allow 4838 or 4840)	B1				
	Mean = $\frac{"4837.5"}{200}$ = 24.1875 awrt $\frac{24.2}{16}$ or $\frac{387}{16}$	M1 A1				
	$\sigma = \sqrt{\frac{134281.25}{200} - \left(\frac{4837.5}{200}\right)^2}$	M1				
	$= 9.293 \dots$ (accept $s = 9.32$) awrt 9.29	A1 (5)				
(b)	$Q_2 = [20.5] + \frac{(100/100.5 - 62)}{88} \times 5 = 22.659$ awrt <u>22.7</u>	M1 A1				
(c)	$Q_1 = 10.5 + \frac{(50/50.25)}{62} \times 10[=18.56]$ (*) $(n + 1 \text{ gives } 18.604)$	(2) B1 cso				
(d)	$Q_3 = 25.5$ (Use of $n + 1$ gives 25.734) IQR = 6.9 (Use of $n + 1$ gives 7.1)	B1 B1 ft				
(e)	The data is skewed (condone "negative skew")	B1 (2) (1)				
(f)	Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median and at least Q_1 .] ((b)(c)) The IQR would remain unchanged (from (d))					
	Notes	(14 marks)				
(a)	Correct answers only score full marks in each part except (c) B1 for 4837.5 or 4838 or 4840 seen. If no $\sum ft$ seen (or attempt at $\sum ft$ seen), B1 can be implied by a correct mean of $\sum ft$					
	1 st M1 for attempt at their $\frac{\sum_{f} t}{\sum_{f}}$ allow 1sf so $\sum_{f} f = \text{awrt } 200$ and $\sum_{f} f = \text{awrt } 5$					
	Or award M1 for a clear attempt at mean where at least 4 correct products of $\sum ft$ 2^{nd} M1 for correct expression including square root seen. Follow through their means Allow a transcription error in 134281.25 but not an incorrect re-calculation.	an.				
(b)	M1 for a correct fraction $\times 5$. Ignore end point but must be +. Allow use of $(n + 1)$ giving 100.5					
(c)	B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n + 1)$ giving 50.25but use of 50.5 scores B0					
(d)	$1^{\text{st}} B1$ for 25.5 (or awrt 25.7 using $n+1$) $2^{\text{nd}} B1 \text{ft}$ for their Q_3 – their Q_1 (or 18.6) (provided > 0) Accept awrt 2sf. Correct ans. only scores 2/2					
(e)	B1 Must mention that the data is skewed or not symmetrical. Do not award for "outliers"					
(f)	1 st B1 for one correct comment from the above. May refer to parts (a), (b), (c) or (a 2 nd B1 for two correct comments from the above for all 3 correct comments from the above	d)				

Question						
5. (a)	3a + 2b = 0.7	M1				
	a + 2a + 3a + 4b + 5b + 1.8 = 4.2 or $6a + 9b = 2.4$	M1				
	5b = 1 Attempt to solve	M1				
	b = 0.2 cao	B1				
	$a = \overline{0.1}$ cao	B1				
		(5)				
(b)	$E(X^2) = 1 \times 0.1 + 2^2 \times 0.1 + 3^2 \times 0.1 + 4^2 \times 0.2 + 5^2 \times 0.2 + 6^2 \times 0.3 = 20.4$ (*)	B1cso				
	$E(X_i) = 1 \times 0.1 + 2 \times 0.1 + 3 \times 0.1 + 4 \times 0.2 + 3 \times 0.2 + 6 \times 0.3 (= 20.4)$					
(-)	$[X_{-1}, (Y) = 1, 20, 4, 4, 2^2, [-2, 7, 6]]$	(1)				
(c)	[Var $(X) = $] $20.4 - 4.2^2$ [= 2.76]	M1				
	Var(5-3X) = 9 Var(X)	M1				
	$=$ <u>24.84</u> or <u>24.8</u> (allow $\frac{621}{25}$) cao	A1				
		(3)				
(d)	[5k = 1 so] k = 0.2	B1				
		(1)				
(e)	P(Y = 1) = 0.1	B1				
	e.g. $P(Y = 2) = F(2) - F(1) = 0.1$	M1				
	$\begin{vmatrix} y & 1 & 2 & 3 & 4 & 5 \end{vmatrix}$					
	P(Y = y) 0.1 0.1 0.4 0.2 0.2 Condone use of $X(x)$ instead of $Y(y)$ Ignore incorrect or no label if table fully correct	A1				
	$P(Y = y) \mid 0.1 \mid 0.1 \mid 0.4 \mid 0.2 \mid 0.2$ Ignore incorrect or no label if table fully correct					
		(3)				
(f)	$P(X = 1) \times P(Y = 1) = 0.01$ cao	M1, A1 (2)				
		(15 marks)				
	Notes					
	Probabilities outside [0, 1] should be awarded M0					
(a)	1^{st} M1 for an attempt at a linear equation in a and b based on sum of probs. = 1					
	2^{nd} M1 for an attempt at a second linear equation in a and b based on $E(X) = 4.2$ Allo	ow one slip.				
	3^{rd} M1 for an attempt to solve their 2 linear equations based on sum of probs and E(X). M	ust reduce to				
	a linear equation in one variable. 1^{st} B1 for b and 2^{nd} B1 for a. Answers only score B1E	31 only				
	The 3 rd M1 may be implied if M2 is scored and both correct answers are giv	en.				
ALT	B1B1 for stating b and a .					
	1^{st} M1 for showing that sum of probs. = 1					
	2^{nd} M1 for showing that $E(X) = 4.2$					
	3^{rd} M1 for an overall comment "(therefore) $a = \dots$ and $b = \dots$ " No comment loses the	nis mark.				
(b)	B1cso for a fully correct expression (no incorrect work seen). E.g. allow $14 \times 0.1 + 41 \times 0$					
	Or $0.1+0.4+0.9+3.2+5+10.8$. Allow in a table (with 20.4) but without "+" ex	plicitly seen.				
(c)	1^{st} M1 for a correct expression for Var(X). Must see -4.2^2					
	2^{nd} M1 for $(-3)^2$ Var(X) or better, no need for a value. Accept -3^2 if it clearly is used	l as +9 later.				
(e)	B1 for $P(Y=1) = 0.1$					
(6)	M1 for correct use of $F(y)$ to find one other prob. Can ft their k if finding $P(Y = y)$	for $y > 2$				
	Can be implied by one other prob. correct ft Look out for $P(3) = 3k - 0.2$ or $P(4) = P(5) = k$.					
	A1 for a fully correct probability distribution. Correct table only is $3/3$					
	A1 for a fully correct probability distribution. Correct table only is 3/3					
(f)	M1 for a correct expression or answer ft their $P(Y = 1)$ and their $P(X = 1)$					
(1)	A1 for 0.01 or exact equivalent only					
	Don't ISW here e.g. $0.1 \times 0.1 + 0.1 \times 0.1$ or $2 \times 0.1 \times 0.1$ are M0A0					
	DOIL LIG W HELE E.g. U.1 \ U.1					

Ques	tion	Scheme	Marks	
6.	(a)	[Let X be the amount of beans in a tin. $P(X < 200) = 0.1$]		
		$\frac{200 - \mu}{7.8} = -1.2816$ [calc gives 1.28155156]	M1 B1	
		$\mu = 209.996$ awrt 210	A1 (3)	
	(b)	$P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$	(3) M1	
		$= P(Z > 1.92) \underline{\text{or}} 1 - P(Z < 1.92) \qquad \text{(allow 1.93)}$ = 1 - 0.9726 = 0.0274 \text{(or better)} \text{[calc gives 0.0272037]}	A1	
		= 0.0274 = awrt 2.7% allow 0.027	A1	
	(c)	[Let Y be the new amount of beans in a tin]	(3)	
		$\frac{210-205}{\sigma} = 2.3263 \text{or} \frac{200-205}{\sigma} = -2.3263 \text{[calc gives 2.3263478]}$ $\sigma = \frac{5}{2.3263}$	M1 B1	
		$\sigma = \frac{5}{2.3263}$	dM1	
		$\sigma = 2.15$ (2.14933)	A1	
			(4) (10 marks)	
Notes Notes				
	(a)	Condone poor handling of notation if answers are correct but A marks must have correct working. M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set = \pm any z value ($ z > 1$) B1 for $z = \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102) or better seen] A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working – sign scores A0 If answer is awrt 210 and 209.996 or better seen then award M1B1A1 $z = 1.28$ gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1 If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1.2816$ is seen)		
	(b)	M1 for attempting to standardise with 225, their mean and 7.8 . Allow \pm 1 st A1 for $Z >$ awrt 1.92/3. Allow a diagram but must have 1.92/3 and correct area indicated. Must have the Z so $P(X > 225)$ with or without a diagram is not sufficient. Award for $1 - 0.9726$ or $1 - 0.9732$ 2 nd A1 for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans scores 3/3		
	(c)	1 st M1 for an attempt to standardise with 200 or 210, 205 and σ and set = \pm any z value ($ z > 2$) B1 for $z = 2.3263$ (or better) and compatible signs. If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here 2 nd dM1 Dependent on the first M1 for correctly rearranging to make $\sigma =$ May be implied e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16$ (M1A0) BUT must have $\sigma > 0$		
		A1 for awrt 2.15. Must follow from correct working but a range of possible z va NB $2.320 < z \le 2.331$ will give an answer of awrt 2.15	lues will do.	